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Abstract—There are many equations in mathematics which are used in our practical life. Burger’s equation is one of them which is a 

good simplification of Navier-Stokes equation where the velocity is one spatial dimension and the external force is neglected in absence of 

pressure gradient. This equation is used to analyze   traffic congestion and acoustics. It occurs in various areas of applied mathematics, 

such as modeling of various problems in fluid dynamics and traffic flow etc.  Due to the complexity of the analytical solution, one needs to 

use numerical methods to solve this equation. For this we investigate finite difference method for Burger’s equation and present an explicit 

central difference scheme. We implement the numerical by computer programming for artificial initial and boundary data and verify the 

qualitative behavior of the numerical solution of burger’s equation. 

Index Terms— Burger's equation, Navier-Stokes equation, Cauchy problem, Inviscid fluid, Viscous fluid,Finite difference schemes , 

Analytical solution, Numerical solution.  
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1  INTRODUCTION                                                                    

HE one-dimensional Burger's equation [1] has received 

an enormous amount of attention since the studies by 

J.M. Burger’s [2] in the 1940's, principally as a model 

problem of the interaction between nonlinear and dissipative 

phenomena. Even though it is a simplest case study’ which in 

many setting is not realistic, it has been important in wide 

range of mathematical problems, from hydrodynamics to ge-

ometry. It is now realized that Burger's equation was used by a 

number of scientists before its re-introduction by Burgers, for 

example see H. Bateman [3] and A.R. Forsyth[4]. 

It is now known that it was first introduced by Bateman [3] in 

1915 who found its steady solutions, descriptive of certain vis-

cous flows. It was later proposed by Burgers [4] as one of a 

class of equations describing mathematical models of turbu-

lence and due to the extensive work of Burger it is now known 

as Burger's equation. It involves series solution that converges 

very slowly for small values of the viscosity constant [5]. Many 

authors Cole, J.D [6], Mittal R.C and Singhal P [7], Caldwell, J., 

P. Wanless and A.E. Cook [8] have discussed the numerical 

solution of Burger’s equation using Finite Difference Methods 

and Finite Element Methods. 

The applications of Burger equation are demonstrated in the 

modeling of water in unsaturated soil, dynamics of soil water, 

statistics of flow problems, mixing and turbulent diffusion, 

cosmology and seismology [9, 10, 11]. 

 In the content of gas dynamics, it was discussed by Hopf and 

Cole. They also illustrated independently that the Burger's 

equation can be solved exactly for an arbitrary initial condi-

tion. Benton and Platzman have surveyed the analytical solu-

tions of the one dimensional Burgers equation. It can be con-

sidered as a simplified form of the Navier-Stokes equation due 

to the form of non-linear convection term and the occurrence 

of the viscosity term. 

In order to understand the non-linear phenomenon of the Na-

vier-Stokes equation, one needs to study Burger's equation 

analytically and numerically as well. Many works has been 

appeared in the last several years e.g. [12], [13]etc. 

In this paper, we present the analytical solution of one-

dimensional Burger's equation as an initial value problem in 

infinite spatial domain and some numerical methods for solu-

tion of Burger's equation as an initial boundary value problem. 

2  BURGER’S EQUATION 

Burger’s equation is a fundamental partial differential equa-

tion from fluid mechanics. It occurs in various areas of applied 

mathematics, such as modeling of gas dynamics and traffic 

flow. It is named for Johannes Martinus Burgers (1895-1981). 

The Burger’s equation was known to Forsyth (1906) and had 

been discussed by Bateman (1915). Due to extensive works of 

Burgers (1948) it is known as Burger’s equation. It is a nonlin-

ear equation for which exact solutions are known and is there-

fore important as a benchmark problem for numerical meth-

ods.  Burger’s equation is a good simplification of Navier-

Stokes equation where the velocity is in one spatial dimension 

and the external force is neglected and without any pressure 

gradient. The Burger’s equation has been used to test and in-

vestigate the numerical method for Navier-Stokes equation. 

This equation is used to analyze traffic congestion and acous-

tics. 
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2.1 Derivation of Burger’s equation 

The Navier-Stokes equation is given by 
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The 1D form of this equation is written as 
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Now in absence of external force and no pressure gradient the 

above equation takes the form 
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This equation is known as burger’s equation. It was named for 

Johannes Martinus Burger’s (1895 – 1981). This is non-linear  

2nd order partial differential equation. 

Burger’s equation is a fundamental partial differential equa-

tion from fluid mechanics. It occurs in various areas of applied 

mathematics, such as modeling of traffic flow and gas dynam-

ics etc. 

When ν→0, Burger’s equation becomes the inviscid burger’s 

equation and written as 
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This is 1st order Quasi-linear partial differential equation.This 

is prototype for equation for which the solution can develop 

discontinuous (shock wave). The previous equation is the con-

vection form of the Burger’s equation. 
 

2.2 Solution of inviscid Burger’s equation 

 
Fig. 1. characteristics and solution for Burger’s equation (small t) 

The inviscid Burger’s equation is first order partial differential 

equation. Its solution can be constructed by the method of 

characteristics. 

Consider the inviscid equation in the above figure with 

smooth initial data. For small time, a solution can be con-

structed by following characteristics. 

Notice that figure looks like an advection equation, but with 

the advection velocity u equal to the value of the advected 

quantity. 

 The characteristics satisfy  x΄(t) = u(x(t),t) and each characteris-

tic u is constant, since 
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             = 0 xt uuu  

Moreover u is constant on each characteristic, the slope x΄(t) is 

constant and so the characteristics are straight lines, deter-

mined by the initial data(figure) 

If the initial data is smooth then this can be used to determine 

the solution u(x,t) for small enough t that characteristics do not 

cross. For each (x,t) we can solve the equation 

x =  ξ +u(ξ,0)t 

For ξ and then 

U(x,t) = u(ξ,0) 

There is an implicit relation that determines the solution of the 

inviscid burger’s equation provided characteristics do not in-

tersect. If the characteristics do intersect, then a classical solu-

tion to the PDE does not exist. 

The viscous Burger’s equation can be linearized by the Cole-

Holf substitution 
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which turns into the diffusion equation 
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That allows one to solve an initial value problem: 
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3 Analytical Solution 
In this chapter, we solve 1d viscid burger's equation for initial 

condition in infinite space analytically by transforming to heat 

equation 
3.1 Burger's equation as an IV problem 

We need to solve the following Initial value problem 
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3.2 The Cauchy Problem 

The Cauchy problem for the Heat Equation is 
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which is a pure initial value problem. 
3.3 The fundamental solution 
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In this section, we derive the fundamental solution and show 

how it is used to solve the above Cauchy problem. 

The heat equation has a scale invariance property that is anal-

ogous to scale invariance of the wave equation or scalar con-

servation laws, but the scaling is different. 

Let 0a   be a constant. Under the scaling  tat,axx 2  

the heat equation is unchanged. More precisely, if we intro-

duce the change of variables: axx,tat 2  ; then the heat 

equation becomes 

2

2

xt 






 



 

This scale invariance suggests that we seek solutions v de-

pending on the similarity variable
t

x 2

, or on
t

x
. However, 

there is a property of the heat equation we would like to pre-

serve in Our similarity solution, that of conservation of energy 

. Suppose   is a solution of the heat equation with the proper-

ty that 




dx)0,x(  and 0)t,x(x   as 

x .Then, integrating the PDE, we find 
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So that the total heat energy is conserved:   
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This suggests we should scale the function w by  2
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With the scaling, heat is conserved in the sense of (5). 

Substituting (6) into the PDE (3) leads to an ODE for 

)(yww   , with non-constant coefficients: 

0)y(w
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Since this is a second order equation, we should have two in-

dependent solutions.  First rewrite the ODE as  
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Since we are really only seeking one solution, it is convenient 

to set the constant to zero, and write the solution of the ho-

mogenous equation: 
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Converting back to )t,x( with 
t

x
y   , we obtain the simi-
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Usually, we choose a particular value of A so that constant in 

(5) is unity  i.e.   
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For this choice of constant, we have the fundamental solution 

of the heat equation:  

t4
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(10) 

 
3.4 Solution of the Cauchy problem 

The fundamental solution (10) satisfies (3) for 0t  . 

Now )t,yx(  is a solution of (3) for all y , by translation 

invariance: yxx   does not change the heat equation. 

Thus, 

)y()t,yx( 0  

   is also a solution of (3). For later reference, we note that the 

heat equation is invariant under time translation also. 

   By linearity and homogeneity of the PDE, we can also take 

linear combinations of solutions. This suggests that 






 dy)y()t,yx()t,x( 0                   (11) 

   should also be a solution. Moreover, properties of   suggest 

that as 
 0t , )x()t,x( 0  since )t,yx(  collapses 

to zero away from xy  , and blows up at xy   in such a 

way (i.e., preserving   1) that the initial condition is satis-

fied in the sense )x()t,x( 0 as t ! 0+. 
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    It is straightforward to check that the integrals for 

xxt ,,  all converge provided )(Cg  is bounded. Then 
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so that u satisfies the PDE for 0t .  

It is more complicated to check the initial condition is satis-

fied. We need to show )x()o,x( 0 . But 0t  is a singular 

point for )t,x(:  is not defined at 0t  . To get an idea of 

why
00t )t,x(lim 

, let's fix x . 

Then, for 0 , 
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By continuity, )x()y( 00   for y  near x , this explains 

how the first integral is approximately the final line. The se-

cond integral approaches zero as
 0t , because 0  

uniformly, and exponentially, away from xy  as
 0t . 

Finally we get the solution of the Cauchy problem described in 

2.2 as follows 
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3.5 The analytical solution of Burger’s equation is as 
follows 
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3.6 Numerical evaluation of Analytical solution 

Now we are interested how our analytical solution behaves 

when we try to implement it numerically. In order to perform 

numerical estimation, we have to consider a function 0u for 

which the two integrations appeared in the numerator and 

denominator of (13) converge. We know that any bounded 

function does the trick. We consider the bounded periodic 

function xsin)x(u0   as initial condition and find the solu-

tion over the bounded spatial domain ]2,0[   at different time 

steps. For the above initial condition we get the following ana-

lytical solution of Burger's equation, 
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For very small , both numerator and denominator of (3.4.1) 

get more closed to zero or get more larger which becomes very 

difficult to handle. So considering the value of   arbitrarily 

very small, we can not perform our numerical experiment. 

We consider the value of v as 0,1. 

Now there is another problem of calculating the value of 

u near initial time. 

We observe from (14) that for very small t , both numerator 

and denominator get much closed to zero and thus difficult to 

handle numerically. 

 
3.7 Boundary values of the Analytical solution 

In this section, we find the values of the analytical solution 

with initial condition xsinu0   at the boundaries of the spa-

tial domain ]2,0[   which in further will be used as boundary 

conditions when we perform numerical schemes to compare 

the numerical solution with corresponding analytical ones. 

For initial condition xsinu0  , we get the analytical solution 
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as described in Section 15. 

For 0x  , 
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The function under integration sign  in the numerator of is an 

odd function, so we must have  
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Now, for  2x , we have, 
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Making the variable change y2z  , we have, 
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The function under integral sign in the numerical of is 

an odd function, so we have,  
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So we have the boundary values 
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4 Numerical Solution 
In this chapter, we present some numerical methods to solve 

the Burger's equationas an initial boundary value problem. 

We use explicit and implicit finite difference schemes to solve 

Burger's equationand then try to pro proceed in a different 

way using Cole-Hopf transformation. We solve our C-H trans-

formed heat equation with Neumann boundary conditions 

usingboth of explicit and implicit finite difference schemes for 

heat equation. 

4.1 Explicit Upwind Difference Scheme of Burger’s 
equation for inviscid fluid  

Consider the inviscid Burger’s equation as a initial boundary 

value problem  
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Now we get the explicit upwind difference scheme for this 

initial boundary value problem using forward difference for 
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which is the explicit upwind difference scheme of inviscid 

Burger’s equation. 

4.2 Explicit Central Difference Scheme of Burger’s 
equation for inviscid fluid 

Consider the inviscid Burger’s equation as an initial boundary 

value problem 
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which is the Lux-Friedrich scheme. 

4.3  Explicit Central Difference Scheme of  Burger’s 
equation for viscous fluid  

Consider the Burger’s equation as an initial boundary value 

problem 
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which is called the Explicit Central Difference Scheme for vis-

cous Burger’s equation. 

4.4 Numerical formulation of Burger's equation 

Our problem is to solve the following IBV problem 
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Now we are interested to solve the above IBVP numerically. 

 
4.5 Explicit finite difference scheme 

To obtain an explicit finite difference scheme, we discretize  
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Inserting the above formulas, the discrete version of the viscid 

Burger's equation formulates the second order finite difference 

scheme of the form 




k

uu n

i

n

i

1

)(
2

11

n

i

n

i

n

i uu
h

u
   = v ×

2

11 2

h

uuu n

i

n

i

n

i  
 

Or, 

)2()(
2

11211

1 n

i

n

i

n

i

n

i

n

i

n

in

i

n

i uuu
h

vk
uu

h

ku
uu 

  (24) 

which is the explicit finite difference scheme for the IBVP. 

 
4.6 Numerical implementation 

Now we implement the numerical finite difference scheme by 

computer programing and perform numerical simulation as 

described below. 

In implementation of our scheme, we consider the spatial do-

main [0; 2] and 

the maximum time step T = 5; 

 

We consider the initial condition 

xxuxu sin)()0,( 0      (25) 

and the Homogeneous Dirichlet boundary conditions 

),2(0),0( tutu      (26) 

For v = .1, we get the stability condition, 
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i.e h ≤ .2 and  k≤ 
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   (27) 

For h =.1, we have k =.05. We considerk = .01; 
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Figure 3.2.2: Solution of Burger's equation using explicit finite 

difference scheme at different time steps with v = .01;∆x = 

.02;∆t = .02 

Clearly, for v = .01, shock occurs as time grows in the middle of 

the graph. 

 
5   Numerical Experiment and Results 

We develop a computer program (code) and implement the 

explicit central difference scheme for Burger’s equation. 

 
5.1  Data Insert 

We implement the explicit central differencefor numerical ex-

periment for the Burger’s equation. We implement the scheme 

for initial and boundary data verify the qualitative behavior of 

the of velocity and viscosity of the viscous Burger’s equation. 

We choose different value of v for this. 

5.2  Results 

To test the accuracy of the implementation of the numerical 

scheme for the viscous Burger’s equation, we discuss our ex-

periment and results are given below: 

We perform the numerical experiment for the equation  

.
x

v)u
2

1
(

xt

u
2

2
2














 We use the initial value which 

satisfies stability condition.  

Now we implement the numerical finite central difference 

scheme of viscous Burger’s equation by computer program-

ming and perform numerical simulation as describe below: 

In implement of our scheme, we consider the spatial domain 

[0,2π] and the maximum time space T= 5. 

We consider the initial condition 

xxuxu sin)()0,( 0   

And the Dirichlet boundary condition ),2(0),0( tutu   

For h = 0.002 and v = 0.01, we get the stability condition, 

max
2

002.  0

iu v  

But since the initial condition is  xxu sin)(0  , so we must 

have, 

max  0

iu 1  

And stability condition becomes, 

2

002.
v  

i.e. v001.0  

for 1v  we get 
k*2

002.0
1

2

  1     i.e. k 0.000002 

For h = 0.002, k = 0.000002. We consider v = 0.01, 0.1, 0.3, 0.5, 1. 
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Fig. 2. Solution of Viscous Burger’s equation using explicit finite difference 

scheme at different viscosity v with ∆x=0.002,   ∆t = 0.000002. 

After calculating stability condition we consider ν = 0.3, 0.6, 

0.9, 1.2, 1.5,3.0 for h = 0.1 and k = 0.0016 we get the following 

figure  
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Fig. 3. Solution of viscous Burger’s equation using explicit finite difference 

scheme at different viscosity ν with ∆x=0.1,   ∆t = 0.0016. 

 

After calculating stability condition we consider ν = 3.3, 3.6, 

3.9, 4.2, 4.5, 6.0 for h = 0.1 and k = 0.0008196, we get the follow-

ing fig. 4. 
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Fig. 4.  Solution of viscous Burger’s equation using explicit finite differ-

ence scheme at different viscosity ν with ∆x=0.1,   ∆t = 0.0008196. 

 

After calculating stability condition we consider ν= 6.3, 6.6, 6.9, 

7.2, 7.5,  9.0 for h = 0.1 and k = 0.000555, we get the following 

fig. 5. 
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Fig. 5. Solution of viscous Burger’s equation using explicit finite difference 

scheme at different viscosity ν with ∆x=0.1,   ∆t = 0.000555. 

After calculating stability condition we consider ν = 9.5, 10.5, 

11.5, 12.5, 13.5, 15.0  for h = 0.1 and k = 0.000333, we get the 
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following fig.  6. 
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Fig. 6. Solution of viscous Burger’s equation using explicit finite difference 

scheme at different viscosity ν with ∆x=0.1,   ∆t = 0.000333. 

By observing above figure we can say when the viscosity ν 

tends to larger then the velocity tends to smaller and when the 

viscosity ν tends to smaller then the velocity tends to larger.  

i.e. when ν→∞, then u→0 

and when ν→0, then u→∞. 

 
6 Conclusions 

Burger’s equation is one of the interesting and implemented 

equations in our practical life for both viscous and inviscid 

fluid. In this paper, we have considered Burger’s equation is 

fundamental partial differential equation from fluid mechan-

ics. First we have shown derivation of Navier-Stokes equation, 

Burger’s equation and numerical methods of Burger’s equa-

tion. At last we have shown numerical result based on the ex-

plicit central difference scheme agrees with basic qualitative 

behabior of viscuss Burger’s equation. In future, we try to de-

velop better numerical ways to solve Burger's equation with 

initial condition and two-sided boundary conditions infinite 

space. 
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